Reference Genome for the Highly Transformable Setaria viridis ME034V
نویسندگان
چکیده
منابع مشابه
Setaria viridis: a model for C4 photosynthesis.
C(4) photosynthesis drives productivity in several major food crops and bioenergy grasses, including maize (Zea mays), sugarcane (Saccharum officinarum), sorghum (Sorghum bicolor), Miscanthus x giganteus, and switchgrass (Panicum virgatum). Gains in productivity associated with C(4) photosynthesis include improved water and nitrogen use efficiencies. Thus, engineering C(4) traits into C(3) crop...
متن کاملA simple and highly efficient Agrobacterium-mediated transformation protocol for Setaria viridis☆
The production and use of sugarcane in Brazil is very important for bioenergy production and is recognized as one of the most efficient in the world. In our laboratory, Setaria viridis is being tested as a model plant for sugarcane. S. viridis has biological attributes (rapid life cycle, small genome, diploid, short stature and simple growth requirements) that make it suitable for use as a mode...
متن کاملOptimization of Phenotyping Assays for the Model Monocot Setaria viridis
Setaria viridis (green foxtail) is an important model plant for the study of C4 photosynthesis in panicoid grasses, and is fast emerging as a system of choice for the study of plant development, domestication, abiotic stress responses and evolution. Basic research findings in Setaria are expected to advance research not only in this species and its close relative S. italica (foxtail millet), bu...
متن کاملSetaria viridis and Setaria italica, model genetic systems for the Panicoid grasses.
Setaria italica and its wild ancestor Setaria viridis are diploid C(4) grasses with small genomes of ∼515 Mb. Both species have attributes that make them attractive as model systems. Setaria italica is a grain crop widely grown in Northern China and India that is closely related to the major food and feed crops maize and sorghum. A large collection of S. italica accessions are available and thu...
متن کاملReference gene identification for reliable normalisation of quantitative RT-PCR data in Setaria viridis
Background Quantitative real-time polymerase chain reaction (RT-qPCR) is the key platform for the quantitative analysis of gene expression in a wide range of experimental systems and conditions. However, the accuracy and reproducibility of gene expression quantification via RT-qPCR is entirely dependent on the identification of reliable reference genes for data normalisation. Green foxtail (Set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: G3 Genes|Genomes|Genetics
سال: 2020
ISSN: 2160-1836
DOI: 10.1534/g3.120.401345